Name: George Christov Rassovsky
Student ID: 17258984
Course: Msc CAVE (NCCA)
Module: Animation Software Development
Assignment: L-Systems
Paper: Report on “L-System Visualiser”

January 31, 2014

Abstract

Abstract

The aim of the report is to give a background to the topic and a brief description
of the different types of L-Systems, followed by the main design of the project
and a plan on how the problem would be resolved as well as the implementation
itself. The research includes all well known L-System types. The project pro-
posed the production of a flexible piece of Software which could be used for the
generic creation and interpretation of L-Systems. The outcome of the software
development resulted in the ’L-System Visualiser’. The report gives a detailed
evaluation of the finished product, drawing useful conclusions from the learning
process.

Introduction

Introduction

Introduced by the Hungarian Biologist Aristid Lindenmayer in 1968, Lindenmayer-
Systems, also known as L-Systems, as they will be referred to in this document,
are a type of formal recursive grammar. In it’s most basic form a L-System
is simply a string of symbols which is derived by an initial axiom expanded
through a set of rules for a given number of iterations. A simple example can
be seen in Figure 1.

Axiom: O o
Rules: A - AO ‘
0—A
A
Iterations: 5 /\
Procedure: A + O
n=0:A
n=1: A0 /\ ‘
n= 2: ACA A + A

n= 3: ACAAO
n= 4: ACAACAOA /\

Figure 1: This figure depicts the first five iterations of a simple Fibonacci se-
quence (DO)L-System. In the tree to the right we can see how the symbols are
being replaced every iteration, following the rules of the L-System.

The work on L-Systems is a derivative of fields such as developmental bi-
ology and fractal geometry. Morphogenesis, the development of patterns and
structural features in organisms (The Tickle Trunk 2011), which deals with the
shapes of tissues, organs and entire organisms (Science Daily 2013), is one of
the main inspirations behind the invention of the L-System. Alan Turing and
his last paper The Chemical Basis of Morphogenesis (Turing 1952), could also
be mentioned amongst the contributors to the field of work leading up to the
formal language.

Related Work

Related Work

L-Systems were initially used, by their inventor, for modelling the growth pro-
cess of plant development and for describing plant cells behaviour. Aristid Lin-
denmayer’s publication, The algorithmic beauty of plants (Lindenmayer 1990) is
one of the most detailed sources on L-Systems, applicable for this project. Since
then, they have been utilised in the application of diverse fractal based systems.
From visualizing the morphology of a variety of organisms to the creation of pro-
cedural computer generated imagery and geometry. Most modern AAA Games
use L-Systems in one way or another somewhere in the flow of their pipeline.
"Elder Scrolls IV: Oblivion’ Figure 2, 'Halo 4’, 'Game of Thrones’ and "Fable:
The Journey’ are only some titles which stand under the common denominator
of using ’SpeedTree’ (Mobygames 2013). Having mentioned this, "Speed Tree’ is
only one of the many 3D vegetation generators with wind physics algorithms
which heavily uses L-Systems in it’s core. Games are not the only place where
L- Systems are being put into use. Film VFX and Animations are other fields
which use software, integrated with L-System algorithms, in various ways.

® 2004 Bethesda Softwarks LLC, a ZeniMax Media company. All rights reserved.

Figure 2: A forest scene from the PC Game, 'Elder Scrolls IV: Oblivion’ (2006).

Related Work

L-Systems are incorporated into most modern 3d Software packages, such
as: Houdini, Maya, 3DsMax, Blender and many others (only as plug-ins in some
cases). As an example, in Figure 3, we can see a screenshot from the Houdini
L-System interface used for the creation of tree-like structures.

#start| (@ Facobook - Mozla Fiefox_| () Grayscott 5 houdini | © windows wedia plaver | 7] :fbocuments and Settin... | {44 RighéMark CPU Clock Lty e
Sunday

Figure 3: A screenshot of a L-System in Houdini.

Technical

Technical

Figure 4: Fractal plants created using L-Systems.

Parameters of an L-System

A typical L-System has a simple set of parameters. What is done with those
parameters and how they get interpreted later, is what produces the stunning
results, as those seen in Figure 2 and Figure 4. In basic terms, each L-System
must have the following: an axiom, a set of rules and a number of iterations.

Axiom — In classic terms, the axiom is the initial string with which the
L-System commences. It is not derived but rather is a given constant. It never
changes and it is used only for the first iteration of the system. In the case of a
recursive L-System, each string derivation would become the axiom for the next
call.

Rules — It is the set of rules that expand the axiom, and every string in
every following iteration. They must contain the definition of each variable
symbol in the system, excluding the constant symbols, which are just copied on
to the next string. There is a wide range of rule types. Some of them would be
mentioned in this paper. Iterations — This is the number of times the system is
to perform the replacing algorithm on it’s current state, based upon the rules of
the system. The iterations number must be a positive integer, e.g. A Natural
number as the system cannot make a recursive call a negative or zero amount
of times.

Types of L-Systems
There are two main branches of L-Systems, namely 'Deterministic’ opposed to
"Stochastic” and ’Context-free’ opposed to ’Context-sensitive’ ones (Procedural
Composition Tutorial).

Deterministic vs Stochastic — As the name suggests, a Deterministic L-
System would have only one rule for each symbol in the string that is being

Technical

processed, thus being deterministic in it’s choice of definition for that symbol.
Stochastic or Non-deterministic L-Systems, on the other hand, could have more
than one rule (or definition, to be more precise) for each symbol. Then one
definition would be chosen out of the list of all of the definitions for this symbol.
This could be done in a pure random fashion, where all the definitions have
the same probability of being picked. Another more complex but flexible way
could be specified, were each separate definition has a value associated with it,
which would then act as a weight or percentage in it’s probability rate during
the random selection when expanding the symbol (Lindenmayer 1990).

Context-free vs Context-sensitive — Context-free L-Systems only focus
on the current symbol which is being processed, and on the rule(s) it might have.
Context-sensitive L-Systems, however, keep track of previous and following sym-
bols. Specific patterns could be similarly set as separate rules themselves. If
the pattern is spotted around the currently processed symbol, the “context-
sensitive” rule is expanded, having priority over any context-free rule related
with the current symbol (Lindenmayer 1990).

These four variations of L-Systems are the building blocks of the most popu-
lar types of L-Systems. They are the following (Where the “D” denotes “deter-
ministic”, and the number denotes whether it is a context-free “0”, a one-sided
context-sensitive “1”, or a two-sided context-sensitive “2” L-System.):

DOL-System. Deterministic, Context-free L-System. (The simplest class of
L-systems, as shown in Figure 1.)

D1L-System. Deterministic, one-sided context-sensitive L-system.

D2L-System. Deterministic, two-sided context-sensitive L-system.

0L-System. Stochastic, context-free L-system.

1L-System. Stochastic, one-sided context-sensitive L-system.

2L-System. Stochastic, two-sided context-sensitive L-system.

Some other types which are not mentioned above could be parametric or
timed L-Systems, where the grammar would vary based upon time or some
customised behaviour. If we consider every variation as a separate type then
there could be an infinite amount of L-System types (Procedural Composition
Tutorial).

The Program incorporates all these L-Systems in a single package. This
makes the Program much more generic and adds a crucial amount of realism
when it comes to the visualisation of natural phenomenon or nature itself. As
there are no two plants which are exact copies of each other, neither would there
be a forest with identical trees. Mimicking those attributes is the key to realistic
representation and simulation of the real world.

Class Diagrams

i w...[LSystembictionary]
o | ST e

o, .+

ExportObj|

>
1 Interpreter
LSystemFactory | [Fiterpret)
register Loysten()

+unregisterLSysten(
+createLsystem()

Figure 5: A basic class diagram, describing the layout of the program, with only
the most relevant members presented.

Export L:System
Output in a Text File

Lsystem Templates

Export Parameters as
Text File

LSystem Factory Formatted

Export Waveform OB)
OpenGL window

Figure 6: The flow of the program with regards to the final implementation.

Class Diagrams

The Program Flow

The program is logically split into two main sections. Part one focuses on the
creation of L-Systems, while the target of the second part is the interpretation
of L-Systems, whether that is output to a file or rendering to a OpenGL window
in real-time.

This project, only considers the six most renowned types of L-Systems, which
were derived from the two main categories spoken of earlier. The program is
created to support flexible usage and is built with a generic interface. Namely an
“Extensible Factory” pattern is used for the creation of the different L-System
types and Interpreters. This method leaves room for the assignment of new
types of L-Systems and Interpreters by the user or simply extending the pro-
grams interface. The L-System parameters (the axiom and the rules) are exter-
nally derived in two ways, either as input from a text file with a specific format,

Class Diagrams

or via user input within the GUI restrictions. Either way the program would
parse the input and store it as a generic data structure of L-System parameters.
There could be an unlimited amount of different structures of L-System param-
eters in the program as they would be stored as objects. Each one of these sets
of parameters could then be used for the generation of L-Systems from the six
previously mentioned types, at a user specified iteration level. This would then
allow the user to compare the result of every type of L-System begotten from
the same set of parameters.

The L-System could then be passed on to the interpreter of choice. After-
wards the interpreter reads the generated string, symbol by symbol and a set of
actions is performed, based upon the interpreter’s representation of each sym-
bol. The interpreter goes through the whole string doing the calculations for
each symbol according to it’s definition and generates a set of points and indices
in 3D space. Those then would get passed on to the OpenGL visualiser class of
the NGL Graphics Library where after being processed they get further passed
onto the Shaders, which on their behalf do the visualisation computation each
frame, drawing the derived geometry in the OpenGL window.

The user can then recreate the visualisation of the L-System at any of the
computed levels, as all the L- Systems’ build() functions have the option of re-
turning a vector of strings, where each string is a separate iteration level in the
system.

L
GLWindow ObjExporter
— T Traramters: 1 TRverte sarvector g vects
[LSystemDictionary] -n_uiParameters: ParametersForUl -m_faces: std: vector<int>
. -mtxt_file: ostrin _nnormals: sta::vecotrangl: :veca>
TSy sTembic onary - sta” mapamsigned const charrs et il . . 2
b currentheshVag: Hesnvao O O Exporter (_ver ts: st rvec tor gL Veck

faces: std: ivector<ints,_normals: std: :vector<ngl.::Vecds)
[+setverts(_verts:sta: :vecor<ngl::vecs>): void

[+sethiormals (_normats: sta: :vecorgl. : Vecds): void
[+save name const_sta:: strings): void

LSystemParameters
Taxion sta:rstring
erutes: st::vector<Rulebatastructure>
T

1
RuleDataStructure
[Fpre_conaition: sta siring
[+key: sta::string
+post_condition: sta: :sty

ring
o i itions:_sta: inapesta: string, floats

[#resizecLi): void
[#paint6L(): voia

rdrawneshinto(): void

[en_symbols: std: :vector<sta: :strin
[FInterpreter()
+Interpreter(p: Interpretparameters)
FileParser +-Interpreter
+interpret (segType: int, jointType: int, radius: float,
2 Va0

LTI nane stastring Gevarls int): Mesn
Tparse(Lieliane: sTd. strang, mout o.p 3
ui_parans: Paraneter sForUT&) :_LsystenParameters

o..e
o InterpretParameters
ParametersForUl e et
Treration: ant segentsize: float
ngle: floar starti; const static float = 0.07
weegrentsize: rioat starty: const statac float - 0,07
n Startzi const static float - 0.0t
constants: st vector<sta: :string> ayrbols: sta: vec tor<sta: :str ing>
4 vectoresta: strings constants: std: :vector<std: :string:
5y sType: int Systen: sto: vector<sta: strang>
o1
LSystemFactory

T Usystems: S0 mp<Sidisiring. cresteCaliback
TL5ystem +(*createcalback) (parans: CONSt L5y sterParameters 61 typeder
+registerLsysten type:const std::string &,
bicreateCallback): void
unregisterLSysten(type:const std::string) void
+createLsysten(type: const std: :string &
const_LsystenParameters &) : Lsysten +

Figure 7: The main UML detailed diagram of the project.

Class Diagrams

LSystemoL

LSystemDOL S iSyetenoL(_params LoystanFaraneters)
_] N vy
oL s oy srers) crosta (paramsiconst Lsysterparanetorse): Lsystent
+-Lyster . 1 [+appiystochastic (rute:Rutepatastructure) : std: : strin
\<reste paran:const LsystenParansterse); static Lsyste DT (1terations: int, nout o resuL: St vector<std: string>6,
SU1ia(iterations: Int, o4t o result: i vector<sta: Stringss, A1t ctagesiboot) | td:svectorcetd: etrings

A stages:bool): std: vectorcatd: -string>
<<LSystem>>
Tt I
LSystemDIL | #m_angle: int LSystemlL
im_scate: oun
—_— X TSy sten
TSy etemIL(parane: Loy sterparameters) - constants: sta: ivectorsstd: :strings Loy stemi s parans:Lsystenparansters)
+-LSystem1L() [fm sxciom: std: :strin | +create (params:const LSystemParameters): LSystem®
-croate (param: const Lsystamparamsterse): Lsystemt im rutes: sta: ivector<aueatasructures = L
FindFirstside): cnar TSyetenn) checksingtesensiutos(): snt
checksinglesensutes) nt Lprin (¢ voia eneckereanitasty: nt.
[+checkFreerute: —>] setaxion(_axion: std::string): void <t— +applyStochastic (rule:RuleDataStructure) : std: : strin
buitd(iterations: int, incut o result: st:ivector<sta: stringsts \etRules(rules: std:imapesid: string, stdistrings) i void i aterations: nt, inaut o resuit: std: svector sstar: scringt,
SUL_stages:bool) : std:ivector<std: istring> aadrute (_pre: sta: :string, key: sta:: string, i >

X SUL_stagesibool) | std:ivectorsstd: istring
post:std: :string, _definition:std: : string,

chance: float): ol
+removeRulakey (_symbol: std: :string, _definition:std::string): void

getaxion(): std: ' string

LSystemD2L getRutes(): sta: imspestas string, floats LSystem2L
[~iSystenbzL (_params: Loy stenpar aneters) P ile_name: sta: :string) = ———
ilystendniT) [ouitati terations: int inout o_result:sta: vector<st::string>s, TSy SteneL params LSy stemaraneters)

Lcrente (params:const LSystenParameterss): Lsystemt 3U_stages:bool): std::vectorsstd: :string> +—Lsysten2L)
[+checkpounesensrutes(): int

s6)0 Lsystems

int
checkSinglesensRutes ()¢ int
<hecksinglesensRules ()i int
[CheckFreehutash): int
[“buiidciterstions: int, inaut o_result: sta: vector<stas tringst checkFreetutes): nt
Ao et s ector SpplyStochastic (rute: ruleDatastructure) st st

ring
+bu1ld(1terations: int, inout o_result: std: vectorsstd:: strings,
a11_stages:bool) _std:ivector<std: istring>

Figure 8: A UML diagram depicting the different types of LSystems inheriting
from the abstract LSystem class.

Design Justification
A brief description of the reasoning behind certain decisions in the initially pro-
posed design of the project, as seen in Figures 7 and 8.

Overall Design

The Program implements the Extensible Factory pattern as this allows for a
more generic, cleaner and easier-to-use interface. The style of the extensible
factory is based on the example in the book API design for C++ by Martin
Reddy (Reddy 2011). This allows an eventual extension of the functionality
and the addition of more types of L-Systems, and the continuation of the devel-
opment. This prospect is the main reason for using the Extensible Factory over
the standard Factory method. The piece of software is very suitable for this
design pattern as there is a L-System abstract base class which is the parent
to every type of L-System. This type of inheritance, on the other hand was
deduced from the fact that most types of L-Systems share common functions
between each other, differing only in the build function and in certain other
helper-functions.

The Factory class is created using a singleton, thus allowing for only one
instance of itself ever existing. As it can be seen in the main detailed diagram
in Figure 7, the L-System Factory can combine any type of L-System with any
already created structure of parameters, by registering them together. This al-
lows for a very flexible behaviour of the system.

The simple UML diagram, Figure 5, describes the basic class arrangement.
As seen in Figure 7, the LSystemParameters data structure is required for the
creation of a L-System. Each instance of an L- System could only be registered
with one set of parameters, but one set of parameters could be registered to a
number of different instances of types of L-Systems. The LSystemParameters
data structure itself is derived either through parsing input from a formatted
file or through the user input extracted from the UL If the user fails to provide

10

Class Diagrams

data in either of the specified ways, the parameters proceed with their default
constructor. This is done instead of having a default constructor for each L-
System class as the L-System factory design, that is used, does not permit an
L-System to be registered without the association of a parameter data structure
to it. This however is restricted with the help of the user interface and thus the
program cannot proceed until the user specifies a valid L-System parameter file
or a template from those provided.

Parameters and rules
The parameters and rules themselves are defined as structs for they are complex
structures of diverse data, which has to be more general for the sake of flexibility
between the different types of L-Systems. Rules also have the capability of stor-
ing pre and post-conditions, if any, as well as the actual rule key, followed by a
map of the definitions and weights for that specific key. The std::map is chosen
over any other data structure, as in a stochastic L-Systems, there could be more
than one definition for a single symbol. That is where the weight value comes
in hand as it allows the user to specify what is the probability of each definition.

A weighted system is used, instead of actual percentage rate, for the ease of
the user. All the weights are being calculated upon parsing and are then stored
as a weighted sum, which adds up to a total of one. This ensures more stability,
as they are recalculated on the fly only in the case of adding new rules after the
file parsing.

The reason the definitions are stored as the key of the map, the weights
being the second value respectively and not vice versa is because there cannot
be two same definitions for a single symbol, but there could be more than one
definition with the same weight, for a single symbol. If no weight is presented
for a certain definition, the program assumes the value of 1.0, which in the case
of no other definitions would be translated to 100%. A weight of 0.0, on the
other hand would result in 0% influence, thus making the definition non-active
in the context of a stochastic system.

Parsing
The parser parses data from a customly formatted text file. It has the task of
populating a LSystemParameters structure. For optimisation it gets its param-
eters passed in by reference.

Formatted Text Files
The formatted text file mentioned above is as simple as possible and yet in-
corporates all the features that any conventional type of L-System could have.
This allows for quite a lot of flexibility and human-error in the formatting of
the text file while still retrieving the correct information. The parser allows
for comments which help aid the user to what the desired format looks like.
The greatest feature of the formatted text file is that it is absolutely generic,
so the user does not need to specify the type of L-System he would build with

11

Class Diagrams

it. The parser would parse all the data accordingly and then the instance of
the L-System would use only the information that is applicable for it, according
to it’s type. Once an L-System is created it allows for the export of a text
file, which would export the L-System parameters described in the same type of
formatted text file which could then be read in by the program straight away.
The exported file will include any changes done to the L-System, so if the user
has altered the axiom or has added new rules, via the provided functions, those
changes would be present in the export. This functionality is added in case the
user wants to recreate the same, or similar L-System in the future.

L-System export
The provision is made for the functionality of exporting already built L-System
strings. The exported output could then be used in other software interpreters.
This functionality provides another middle ground between the produced piece
of software and any other implementation. This is more of a pipline precausion,
that two different L-System parsers or visualisers can speak to each other dispite
having different parsers, on the basis of a resultant L-System string.

L-System builds and Interpreters
Once a certain L-System has been built, the output could be used in the pro-
vided interpreter. There is no limit to the number of interpreters, as they
could have very different tasks, from creating points in 3D space to exporting a
height map. There are an infinite variation of interpreters that could be written.

Meshing
The project was extended with the ability of producing an actual mesh. It pro-
duces a very crude mesh but never-the-less it could be exported and integrated
into a 3D software package, as seen in Figure X.

Figure 9: A simple tree-like structure created in L-System Visualiser, exported
as a OBJ file and imported into a simple scene in Maya.

The nature of L-Systems is such that it not possible to have a watertight

12

Class Diagrams

mesh in every scenario. Some L-System patterns are overlapping, some plant-
like structures have their 'branches’ crossing, etc. All these unknowns restrict
the usage of L-Systems in many areas such as physics engines, and makes them
in many cases not 100% visually correct. This undesired results however, could
be limited using appropriate parameters. The problem of inconsistent meshing
remains when joining segments one with another and especially at the joints
where more segments connect to one.

The Joints — This topic does not give room for great discussion as there
is no easy solution apart from implementing implicit surfaces. That is why this
project has spheres, with the complexity and scale of the segment, for joints.
Sphere joints do not solve the problem with mesh discontinuity, it is mainly
implemented for aesthetic reasons. A much better solution would consist in the
procedural creation of correct joints matching all attaching segments, without
holes and discontinuities. This is the concept of the circular joints which were
conceived in this project, but which run out of the scope of this particular
project. They definitely remain as a case of further research and potentially
implementation.

13

Outcome

Outcome
The Code

The “L-System Visualiser” is a small software program written in C++ using
NGL graphics library for the OpenGL content and Qt for the GUI components.
It follows the NCCA coding convensions and uses Doxygen commenting style.

The final implementation takes advantage of the “Extensible Factory Pat-
tern” for creation and registration of L-Systems according to their types as
derived from the parameters passed on to the program. The same design pat-
tern was initially used for Interpreters of the L-System. But it turned out to be
rather cumbersome and was removed, following the KISS principle, hence the
single Interpreter class, which takes care of all possible interpretations, since
there could be only one at a time anyway.

The input stream parser, which was initially proposed, also did not make it
to the final product as a result of it being redundant due to the GUI developed
with Qt.

For the stochastic systems, boost random engine called “mersenne twister”
was implemented at first but was later removed for the same reason. It was
replaced with the standard library’s random function. Even though theoreti-
cally the boost random is much better in many ways, it required much more
additional code and was much more computationally expensive than the std
random function, which was satisfactory for the purposes of the system.

The Program

The program itself is constructed as a standalone application, relying on the
a current version of NGL. The main focus of the project was implementing all
foundational types of L-Systems. And then graphically interpreting them in 3D
space using OpenGL primitives such as points lines and triangels. The latter is
represented under the form of cylinders which are created on the fly and passed
onto the shaders, as VAQ’s, for drawing. Using this method, a mesh is created
which can be seen in the OpenGL viewport. This way of rendering on the GPU
allows for high-polygonal meshes to be displayed on screen that would otherwise
be impossible on the CPU. In Figure X an example of such a mesh is displayed.
This is a 3D Hilbert Curve at 6 iterations with a cylinder detail of 12, which
is to say: made out of 12 slices (each consisting of 2 triangles). This gives a
grand total of just over 76 million triangles rendered on screen in real-time and
still keeping the viewport reasonably interactive. This is a impressive figure
considering that the code has not been optimised in terms of rendering.

A created mesh can then be exported as an OBJ file to a user specified loca-
tion. By using the universal .obj file format within minutes those meshes could
be loaded into a major 3D software package such as Maya and rendered with
appropriate settings, as seen in Figure X.

14

BUILD DOL

Figure 10: A 3D Hilbert Curve at 6 iterations with a cylinder detail of 12,
resulting in a mesh of over 76 million triangles, rendered in real-time.

The program allows for two other types of exports, which are that of the
parameters (e.g angle, iterations, constants, axiom, rules, etc.) and that of the
resulting L-system string. Both of them are in the form of a text file which is
formatted in a manner compatible with the file input of the L-System Visualiser.
Those exported files could be used directly into the same system or used as ref-
erence on other systems which do not recognize the exact formatting of the files.

The GUI
The user iterface is created entirely with gtcreator under QApplication. For the
GUI some of the main rules of intuitive UI were followed. The UI design was
led by some of Nielsen’s principles, such as, “Recognition rather than recall” -
Jacob Nielsen (1995). The aim when creating the Ul in the limited timespan,
was to create an intuitive, easy-to-use extension of the program which would
allow for the user to learn how to use the program in a much quicker way. The
U is used for some other good reasons too, such as, restricting the users input
abilities to reasonable values and thus preventing some potential pitfalls of the
exponentially growing complexity of L-Systems. At the same time, the goal was
that all the major features of the program would be extracted and displayed for
fast user interaction and usage. As a result tabs were used to separate the main
components of a L-system and at the same time larger, always-visible buttons
were used for the main features connected with the creation of a new L-System,

15

Outcome

Figure 11: A few meshes created with and exported from L-System Visualiser,
which were later imported into Maya and rendered in a scene.

such as loading a file/template and building a recognised system. This type of
layout provides a steep learning curve when using the software for the first time.
However some basic knowledge of L-Systems is recommended in order for the
user to be capable of proper interaction with the system, due to the nature of
the topic itself.

16

Encountered Issues

Encountered Issues

Many issues were encountered along the way to final release. The final version
of the program though, does not vastly differ from the originally proposed de-
sign and implementation. There were no major changes to the product due to
unmanagable tasks, however time was the main issue. Even though the product
would be considered finalised, there are many other features which could be
introduced, potentially as a further work.

Milestones — Some of the major milestones of the project were respectivelly:
Parsing correcly from a file; Building the six major types of L-Systems, spo-
ken of earlier, from the parsed parameters; Interpreting the L-Systems within
a OpenGL context; Implementing 2D, Bracketed-systems, 3D, 3D bracketed-
systems; Creating and interpreting with geometry; Implementing sphere joints
and working on the concept of 'watertight’ joints; Creating the Ul and exposing
all necessary functionality.

Known issues — The current version of the software is far from perfect. There
are many small problems which were left unresolved. Mainly due to the lack of
time.

e There are some inconsistencies between the Ul and keyboard shortcuts
for various tasks as for example switching between wireframe and solid
mode. The fix to this would be a matter of connecting the two ways of
manipulating the draw mode with a common attribute.

e One other problem with the Ul is the double key press which is registered
once the displayed mesh becomes heavy and a lag occurs. This introduces
an unwanted additional key press which would increment the value twice
instead on once.

e Another known issue is a small triangle puncture in the north pole of the
sphere model. It would be fixed once the correct index is passed, which
wold close this last triangle and thus the sphere.

e There are three registered pairs of shaders used in the current version of
the program. Two of them are used for the visualisation of the L-System,
namely, the “ColourShader” and the “Phong”. The colour shader is used
to pass colour per vertex using the VAO. As this is not done correcly
for the cylinder representation, when using the colour shader with the
cylinders, colours would appear wrong. The colour shader works perfectly
for now only with the line and point interpretation. This is not a hard
problem to fix, but there were other more vital things that had to be done
in the allocated time span of the project.

e The so called “watertight” joints, which currently are under a beta tag,
also would not apear correct as they are left in the program only for
reference and proof of concept.

17

Encountered Issues

e Other more key issues which were spotted in the code would be const
correctness and the program’s performace were some memory leaks can
be observed after a vast and heavy exploitation.

18

Conclusion

Conclusion

The project fulfilled all major goals it set off to do. Some of the main ones were
namely, delivering a L-System generator comprising all basic types of L-Systems
with ability for further extensions. The interpretation into 2d and 3d visualisa-
tion was also a fundamental milestone. The ability for exporting meshes in the
.obj file format was also one of the key features promised in the initial report.
All those delivarables were implemented and delivered with the final product.

One feature which was mentioned but was never executed was the creation
of a heightmap by the system. This was not looked into in great depth as it
inhabits a different branch of L-System usage which was not focused upon in
the limited timespan. This still remains as a further extension which could be
worked upon in the future.

On the other hand the project delivered some additional features which
were not necessarily planned in the initial report. One of them is the cylindrical
representation of the L-System, which allows for the creation of a solid mesh out
of the interpreted positions. This was further expanded by the implementation
of sphereical joints and the concept of circular (watertight) joints, which were
mentioned in the above sections.

19

Future Work

Future Work

There is a vast oportunity for extensions and further work on the software.
Some suggestions are mentioned below.

Universalising the parser — A standardised XML format could be used
for parsing which would make the file input more robust.

Shader writing — There is always room for shader writting. Even though
that wouldn’t necessarily be of the greatest importance for this specific project,
at that stage, it is certainly a place where time could be invested for the creation
of a better looking product.

Extending the L-System Factory — This would be one of the key fur-
ther work topics. There is a whole universe of possibilities opening up with
the implementation of Parametric I.-Systems. As well as any of the other more
advanced systems such as DTOL, TOL, etc.

Interpretation modifiations — The interpreter could be extended along
with the extension of the L-System Factory. In the case of parameteric L-
Systems being implemented a parameter could mean the drawing of different
geometrical primitives, such as patches, spheres, curves, etc. This would allow
for the creation of complex natural shapes, such as those seen in Figures X, X
and X.

Figure 12: A snail-like mesh created with a simple parametric L-System and
interpreted with some additional geometeric primitives.

Watertight meshes — One of the main issues with with most L-Systems
out there is that they produce meshes which cannot really be used in many
places, due to the fact that many of them are not water tight. One of the key

20

Future Work

Figure 13: Parametric L-System were used for the creation of those plant-like
structures.

Figure 14: An array of different mutations.

problems is the joints in between segments. Implicit surfaces could be used to
create watertight joints. Another method was started for this project which
takes account of the parent and children branches and constructs a joint after
creating all the segments. This method unfortunately could not be completed
before the deadline and thus is left under a BETA tag in the final release.

Working on the UI — There is always more to be desired from the Ul,
both in terms of extentions and in simplicity. This category is open to many
changes and improvements.

Optimisation — A key step would be optimisation, both on the parsing and
interpretation of the L-Systems but most importantly on the actual visualisa-
tion in OpenGL. There are many types of algorithms that could be imlpemented
and even many fixes to the way the code workes which would increase the per-
formance of the program.

21

Future Work

22

REFERENCES Bibliography

References

1]

The Tickle Trunk, 2011. Lindenmayer Systems [online]. The Tickle Trunk.
Available from: http://www.cgjennings.ca/toybox/lsystems/ [Accessed 14
Nov 2013].

Science Daily - Science Reference, 2013. Mor-
phogenesis [online]. Science Daily. Available from:
http://www.sciencedaily.com/articles/m/morphogenesis.htm [Accessed
14 Nov 2013).

Turing, A. M., 1952. The Chemical Basis of Morphogenesis. Philosophical
Transaction. Royal Society of London.

Prusinkiewicz, P. and Lindenmayer, A., 1990. The Algorithmic Beauty of
Plants. New York: Springer-Verlag.

Mobygames, 2013. Middleware: SpeedTree [online]. Mobygames. Available
from: http://www.mobygames.com/game-group/middleware-speedtree [Ac-
cessed 15 Nov 2013]

Worrall, D., 1997. Procedural Composition Tutorial: L-Systems
[online]. Procedural =~ Composition Tutorial. — Available from:
http://www.avatar.com.au/courses/Lsystems/ [Accessed 14 Nov 2013].

Reddy, M., 2011. API Design for C++. Amsterdam: Morgan Kaufmann.

Nielsen Norman Group, 2014. 10 Usability Heuristics for
User Interface Design [online]. Jacob Nielsen. Available from:
http://www.nngroup.com/articles/ten-usability-heuristics/ [Accessed
29 Nov 2014].

23

